A projectile cover double range as compare to its maximum height attained. The angle of projection is
$\tan^{-1} \,2$
$\tan^{-1} \,4$
$\tan^{-1} \,3$
$\tan^{-1} \,5$
Suppose a player hits several baseballs. Which baseball will be in the air for the longest time?
Given below are two statements. One is labelled as Assertion $A$ and the other is labelled as Reason $R$.
Assertion A :Two identical balls $A$ and $B$ thrown with same velocity '$u$ ' at two different angles with horizontal attained the same range $R$. If $A$ and $B$ reached the maximum height $h_{1}$ and $h_{2}$ respectively, then $R =4 \sqrt{ h _{1} h _{2}}$
Reason R: Product of said heights.
$h _{1} h _{2}=\left(\frac{u^{2} \sin ^{2} \theta}{2 g }\right) \cdot\left(\frac{u^{2} \cos ^{2} \theta}{2 g }\right)$
Choose the $CORRECT$ answer
A ball of mass $m$ is thrown vertically upward. Another ball of mass $2\,m$ is thrown an angle $\theta$ with the vertical. Both the balls stay in air for the same period of time. The ratio of the heights attained by the two balls respectively is $\frac{1}{x}$. The value of $x$ is $.....$
A water fountain on the ground sprinkles water all around it. If the speed of water coming out of the fountain is $v$, the total area around the fountain that gets wet is :
A stone is projected with a velocity $20 \sqrt{2}\,m / s$ at an angle of $45^{\circ}$ to the horizontal. The average velocity of stone during its motion from starting point to its maximum height is $..........\,m/s$ (take $g=10\,m / s ^2$ )